Signal transduction in bacteria: phospho-neural network(s) in Escherichia coli?

نویسندگان

  • K J Hellingwerf
  • P W Postma
  • J Tommassen
  • H V Westerhoff
چکیده

The molecular basis of many forms of signal transfer in living organisms is provided via the transient phosphorylation of regulatory proteins by transfer of phosphoryl groups between these proteins. The dominant form of signal transduction in prokaryotic microorganisms proceeds via so-called two-component regulatory systems. These systems constitute phosphoryl transfer pathways, consisting of two or more components. Most of these pathways are linear, but some converge and some are divergent. The molecular properties of some of the well-characterised representatives of two-component systems comply with the requirements to be put upon the elements of a neural network: they function as logical operators and show the phenomenon of autoamplification. Because there are many phosphoryl transfer pathways in parallel and because there also appears to be cross-talk between these pathways, the total of all two-component regulatory systems in a single prokaryotic cell may show the typical characteristics of a 'phospho-neural network'. This may well lead to signal amplification, associative responses and memory effects, characteristics which are typical for neural networks. One of the main challenges in molecular microbial physiology is to determine the extent of the connectivity of the constituting elements of this presumed 'phospho-neural network', and to outline the extent of intelligence-like behaviour this network can generate. Escherichia coli is the organism of choice for this characterization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONSTRUCTION OF RECOMBINANT PLASMIDS FOR PERIPLASMIC EXPRESSION OF HUMAN GROWTH HORMONE IN ESCHERICHIA COLI UNDER T7 AND LAC PROMOTERS

In order to study the periplasmic expression of human growth hormone (hGH) in Escherichia coli, the related cDNA was inserted in two expression plasmids carrying pelB signal peptide, one with lac bacterial promoter and the other with a bacteriophage T7-based promoter. The recombinant plasmids were moved to TG1 and BL21 strains of E. coli, respectively. To induce the expression systems, IPTG and...

متن کامل

Signal Amplification in Bacterial Chemotaxis through Receptor Teamwork Chemoreceptors of different detection specificities signal collaboratively in a highly cooperative array, the bacterial equivalent of a neural network

M otile bacteria move with purpose: their movement machinery, whether for swimming or gliding, is responsive to environmental cues and enables them to seek optimal living habitats. The best studied of these bacterial behaviors is chemotaxis, the movement of an organism toward or away from particular chemicals. Although first described in the late 1800s, scientists resumed studying chemotaxis in...

متن کامل

Investigating the antibacterial effects of some Lactobacillus, Bifidobacterium and acetobacter strains killed by different methods on Streptococcus mutans and Escherichia coli

Although there are many health advantages assigned to different live bacteria such as probiotics, some health threatening effects have also been reported. For example, live bacteria can transfer antibiotic resistance genes to other commensal and opportunistic bacteria of gastrointestinal tract. Recently, it was shown that using killed bacteria have some advantages over live ones. In this resear...

متن کامل

A genetically encoded, high-signal-to-noise maltose sensor

We describe the generation of a family of high-signal-to-noise single-wavelength genetically encoded indicators for maltose. This was achieved by insertion of circularly permuted fluorescent proteins into a bacterial periplasmic binding protein (PBP), Escherichia coli maltodextrin-binding protein, resulting in a four-color family of maltose indicators. The sensors were iteratively optimized to ...

متن کامل

Effects of combination of magnesium and zinc oxide nanoparticles and heat on Escherichia coli and Staphylococcus aureus bacteria in milk

Objective: The objective of this study was to investigate the antibacterial activities of combination of MgO and ZnO nanoparticles in the presence of heat against Escherichia coli and Staphylococcus aureus. Materials and Methods:Bacteria were grown on either agar or broth media followed by the addition of ZnO and MgO nanoparticles. Then the combined effect of ZnO and MgO nanoparticles was inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology reviews

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 1995